Full Content is available to subscribers

Subscribe/Learn More  >

Indenter Tip Dependence in the Determination of Elastic Modulus in Polymers

[+] Author Affiliations
Seyed Hamid Reza Sanei, F. Alisafaei, Chung-Souk Han

University of Wyoming, Laramie, WY

Paper No. IMECE2013-64831, pp. V010T11A079; 5 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME


The two most common outputs of nanoindentation experiment are hardness and elastic modulus. Length scale dependent deformation in polymers has however been observed in different experiments such as microbeam bending, torsional thin wires and indentation testing which may affect the mechanical testing. Unlike in metals where the size dependency is attributed to necessary geometry dislocations, the origin of length scale dependent deformation in polymers is not well understood. In this study, elastic modulus of polydimethylsiloxane (PDMS) is determined using both Berkovich and spherical tips. Observing different trends for elastic modulus upon the change of indentation depth using these two different tips brings up the question which tip should be used to get the real mechanical properties of PDMS which is discussed here. Surface roughness, surface effects and the imperfection of the Berkovich indenter tip are negligible at the studied length scale.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In