Full Content is available to subscribers

Subscribe/Learn More  >

Performance Characterization of a PDMS-Based Microfluidic Device for Detecting Continuous Distributed Loads

[+] Author Affiliations
Peng Cheng, Wenting Gu, Jiayue Shen, Arindam Ghosh, Ali Beskok, Zhili Hao

Old Dominion University, Norfolk, VA

Paper No. IMECE2013-63709, pp. V010T11A063; 8 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME


In this paper, the performance of a PDMS-based microfluidic device is thoroughly characterized for detecting continuous static and dynamic loads. This device comprises of a single PDMS rectangular microstructure and a set of electrolyte-enabled distributed transducers. It is fabricated by a standard fabrication process well developed for PDMS-based microfluidic devices. One potential application of this device is to measure spatially-varying mechanical properties of heterogeneous soft materials, through quasi-static, stress relaxation and dynamic mechanical analysis (DMA) tests. Thus, the response of this device to three types of inputs: static, step and sinusoidal, is examined with a custom experimental setup. For the first time, the capability of using a polymer-based microfluidic device to detect sinusoidal inputs is reported. The characterized results demonstrate the potential of using this device to measure soft materials.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In