Full Content is available to subscribers

Subscribe/Learn More  >

Studies of the Dimensional Effects of SU-8 and PDMS Pillar Arrays on Hydrophobicity

[+] Author Affiliations
Jiheng Zhao, Jianlong Gao, Wei Xue

Washington State University – Vancouver, Vancouver, WA

Xinmiao Chen, Liping Liu

Lawrence Technological University, Southfield, MI

Paper No. IMECE2013-62692, pp. V010T11A059; 7 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME


The creation of hydrophobic and superhydrophobic surfaces has attracted tremendous attention in the past decade. Such surfaces provide unique and highly useful properties that are suitable for a wide range of applications. In this paper, we report our findings on the dimensional effects of SU-8 and polydimethylsiloxane (PDMS) pillar arrays on surface hydrophobicity. Pillar arrays with various dimensions are designed and fabricated on SU-8 and PDMS surfaces using optical lithography and soft lithography. The water droplet contact angles on these features are obtained with a goniometer to demonstrate how the related dimensions, including the diameter of each pillar and the distance between two pillars, affect the surface hydrophobicity. Theoretical analyses are also carried out to estimate the contact angles of water droplets based on Cassie and Wenzel models. The experimental and analytical results are presented and compared in this paper. The results demonstrate that the dimensional change of a pillar array has a direct impact on its surface hydrophobicity. The highest contact angle can only be achieved using optimum designs. Furthermore, there are clear differences in our measurement results between the SU-8 and PDMS pillar arrays. We believe that these differences come from the inherent hydrophobicity difference of the two polymers. Without further coatings or treatment steps, SU-8 pillar arrays can achieve contact angles up to 140° while the PDMS structures can achieve higher contact angles up to 170°. Last, the PDMS pillar arrays demonstrate a transition phase from the Cassie state to the Wenzel state during the wetting experiments.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In