Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Study of the Effects of Asymmetric Micro Ratchets on Pool Boiling Performance

[+] Author Affiliations
Lance Brumfield, Sunggook Park

Louisiana State University, Baton Rouge, LA

Paper No. IMECE2013-62982, pp. V010T11A049; 2 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME


Nucleate boiling is an attractive method for achieving high heat flux at low superheat temperatures. It is frequently used for industrial applications such as heat exchangers and is being considered to cool advanced central processing units (CPU) which produce heat fluxes on the order of 1 MW/m2 and are becoming increasingly less efficient to cool via forced conduction of air. The issues with implementing nucleate boiling as a cooling mechanism lies in the difficulty of quantifying the complex and numerous mechanisms which control the process.

A comprehensive nucleate boiling model has yet to be formulated and will be required in order to safely and reliably cool high performance electronics. Spatially periodic systems with localized asymmetric surface structures (ratchets) can induce directed transport of matter (liquid/particles) in the absence of net force. It was hypothesized that ratchets may enhance pool boiling heat transfer by aiding in the removal of vapor which forms on the heated surface. Therefore, experiments on pool boiling using asymmetric micro ratchets of various geometries, with FC-72 as the working fluid, were investigated. Additionally, various numerical pool boiling simulations were performed using FLUENT to better understand the underlying physical principles behind pool boiling.

Copyright © 2013 by ASME
Topics: Pool boiling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In