0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of DQM Method to the Steady State Analysis of Thermo-Tunneling Electrodes

[+] Author Affiliations
Eniko T. Enikov, Mahdi Ganji

University of Arizona, Tucson, AZ

Paper No. IMECE2013-64676, pp. V010T11A048; 7 pages
doi:10.1115/IMECE2013-64676
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

Thermo-tunneling of hot electrons across a few nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. However development of such applications requires formation of dynamically balanced gap separating the two surfaces. One such approach is the use of Lorentz (repulsive) and Coulomb (attractive) forces to obtain an equilibrium gap between two elastic electrodes. The present paper describes the application of the Differential Quadrature Method (DQM) to the solution of a clamped-clamped Euler-Bernouli beam subject to the combined action of Lorentz and Coulomb forces. The results show that due to non-local action of the Lorentz force, the shape of the tunneling electrode is inherently non-uniform with Coulomb forces acting primarily at one end of the beam while the Lorentz force distributed along the remaining part. DQM method also allows analysis of the stability of the tunneling current as a function of the applied external potential and magnetic field. In addition to the classical electrostatic pull-in instability with no-tunneling, a second regime with non-zero tunneling current is also identified. To the best of our knowledge this is the first attempt to analyze this phenomenon under the effect of both Electrostatic and Lorenz forces in this particular case. Linear stability analysis of the tunneling regime indicates the appearance of a saddle-saddle bifurcation indicating unstable tunneling regime.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In