0

Full Content is available to subscribers

Subscribe/Learn More  >

Silicon Carbide MEMS Capacitive Pressure Sensor for Harsh Environments

[+] Author Affiliations
Zhibang Chen, Wei Du, Feng Zhao

Washington State University, Vancouver, WA

Paper No. IMECE2013-64764, pp. V010T11A042; 5 pages
doi:10.1115/IMECE2013-64764
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

In this paper, we investigated a new capacitive pressure sensor structure on a silicon carbide (SiC) platform for high sensitivity and harsh environment operation capability. The superior material properties of SiC ensure robustness of the new sensor to withstand large-scale pressure at high temperature and in chemical/biological medium. The sensor structure consists of a circular SiC diaphragm suspended by four arms over a SiC substrate, with design to enable diaphragm to deflect nearly uniformly with applied pressure. This configuration results in improved sensing properties. With high sensitivity and operation capability in hostile environment, this new pressure sensor is promising for use in a wide range of applications such as automotive, nuclear station, aerospace, and oil/gas exploration, etc.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In