Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Fully Developed Fluid Flow and Heat Transfer in Double-Trapezoidal Microchannels

[+] Author Affiliations
Mostafa Shojaeian, Ali Koşar

Sabanci University, Istanbul, Turkey

Paper No. IMECE2013-66734, pp. V010T11A029; 7 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME


Fully developed fluid flow and heat transfer characteristics of double-trapezoidal microchannels with constant wall temperature are numerically investigated in the slip flow regime. The governing equations are solved together with the appropriate boundary conditions using finite volume method. The effect of rarefaction on Poiseuille number, Po, and Nusselt number, Nu, is studied for Knudsen numbers, Kn, varying from 0 to 0.1. The effects of base angle, B, and aspect ratio, A, on the fluid flow and the heat transfer characteristics are also examined. The results reveal that the rarefaction and the cross-section shapes have prominent effects on these characteristics of double-trapezoidal microchannels. According to the results, the Poiseuille number decreases with increasing Kn, while the values of the Nusselt number completely depend on the impacts of the rarefaction and the fluid-surface interaction. Po and Nu decrease with aspect ratio for A<1, while the effect of aspect ratio on Po and Nu becomes unclear for A>1. Moreover, an increase in the base angle has a positive effect on Po and Nu, however this increasing trend is less pronounced for B > 60 ° and A < 1.67.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In