0

Full Content is available to subscribers

Subscribe/Learn More  >

Oscillatory Behavior of the Nonlinear Clamped-Free Beam Microgyroscopes Under Electrostatic Actuation and Detection

[+] Author Affiliations
Mahdi Mojahedi, Mohammad Taghi Ahmadian, Keikhosrow Firoozbakhsh

Sharif University of Technology, Tehran, Iran

Ahmad Barari

University of Ontario Institute of Technology, Oshawa, ON, Canada

Paper No. IMECE2013-62214, pp. V010T11A022; 8 pages
doi:10.1115/IMECE2013-62214
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

Vibratory Micromachined gyroscopes use suspending mechanical parts to measure rotation. They have no gyratory component that require bearings, and for this reason they can be easily miniaturized and batch production using micromachining methods. They operate based on the energy interchange between two modes of structural vibration. The objective of this paper is to study the oscillatory behavior of an electrostatically actuated vibrating microcantilever gyroscope with proof mass at its end. In the modelling, the effects of different nonlinearities, fringing field and base rotation are considered. The microgyroscope is subjected to coupled bending oscillations around the static deflection which are coupled by base rotation. The primary oscillation is generated in drive direction of microgyroscope by applying a pair of DC and AC voltages in the tip mass. Secondary oscillation in sense direction is induced by Coriolis coupling when the beam has the input angular rate along longitudinal axis. Input angular rotation can be measured by sensing oscillation tuned by another DC voltage applied to the proof mass. First a system of nonlinear equations which describes flexural-flexural motion of electrostatically actuated microbeam gyroscopes under input rotation, is derived by extended Hamilton principle. The oscillatory behavior of microgyroscopes is then analytically investigated, where the microgyroscopes are predeformed by DC voltages in both directions. The effects of the nondimensional parameters on the natural frequencies of the system are discussed at the end of the paper.

Copyright © 2013 by ASME
Topics: Microgyroscopes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In