0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Thermoelectric Properties of SWCNTs and SiC Nanoparticles and its Composites Doped With Sol-Gels

[+] Author Affiliations
Mujibur R. Khan, Miletus Jones

Georgia Southern University, Statesboro, GA

Luz Bugarin, Salvador Sandoval

University of Texas at El Paso, El Paso, TX

Paper No. IMECE2013-65773, pp. V010T11A015; 7 pages
doi:10.1115/IMECE2013-65773
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

Thermoelectric (TE) properties of Single wall carbon nanotubes (SWCNTs) and Silicon carbide (SiC) nanoparticles after treated with sol-gel dopants at elevated temperature. Different combinations of P and N type sol-gels were used. The combinations were Boron-Antimony, Aluminum-Antimony, Aluminum-Phosphorus and Boron–Phosphorus. The nanoparticles were randomly distributed on a nonconductive glass substrate and hot and cold junctions were created using silver epoxy and Alumel (Ni-Al) wire. The carbon nanotubes used were approximately 60% semiconducting and 40% metallic. Voltage (mV), current (μA) and resistance (Ω) were measured across the distributed nanoparticles within 160° C temperature difference. The Seebeck coefficient for pristine SWCNTs was 0.12 mV/oC. When doped with Boron-Antimony the Seebeck coefficient increased to 0.981 mV/°C. On the hand, SiC nanoparticles showed no TE effect at pristine form, but when infused with SWCNTs substantial TE effect was present. Even though the Seebeck coefficient was in a similar range with different SWCNT concentrations (wt%), current, resistance and Power factor (P.F.) changed with wt% of nanotubes. Resistance of the nanotube samples slightly decreased with the increase in temperature. Finally, the SiC+SWCNT composites were prepared using the sintering process at around 1500° C. Thermoelectric and Mechanical properties of the composites were tested. The structure-property relation was analyzed using SEM (scanning electron microscope) and XRD (X-ray diffraction). It was revealed that fiber like SWCNTs created randomly distributed network with Nano contact junctions inside the SiC matrix and enhance thermoelectric and mechanical properties in the combined SiC+SWCNTs material system. Put abstract text here.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In