0

Full Content is available to subscribers

Subscribe/Learn More  >

Structural Behavior of Microbeams Actuated by Out-of-Plane Electrostatic Fringing-Fields

[+] Author Affiliations
Hassen M. Ouakad

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Paper No. IMECE2013-65770, pp. V010T11A014; 7 pages
doi:10.1115/IMECE2013-65770
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro- and Nano-Systems Engineering and Packaging
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5639-0
  • Copyright © 2013 by ASME

abstract

In this paper, we present an investigation of the static behavior of a doubly-clamped microbeam actuated electrically through out-of-plane electrostatic fringing-fields. The distributed electrostatic force is caused by the asymmetry of the fringing-fields. This is actually due to the out-of-plane asymmetry of the beam and its two actuating stationary electrodes. The electric force was approximated by means of fitting the results of two-dimensional numerical solution of the electrostatic problem using Finite-Element Method (FEM). Then, a reduced-order model (ROM) was built using the Galerkin decomposition with linear undamped modes of a clamped-clamped beam as base functions. The ROM equations are solved numerically to get the static response of the considered micro-actuator when actuated by a DC load. Results shows possibility of having three different regimes for this particular MEMS device: a bending regime, a catenary regime, and an elastic regime. Eigenvalue problem is then solved to get the variation of the fundamental natural frequency when the system is deflected by a DC load. Results show that controlling the microbeam stroke, with a DC voltage on the gate electrodes, enables us to tune the system frequency, resulting in a possibility of a tunable MEMS device without a pull-in scenario.

Copyright © 2013 by ASME
Topics: Microbeams

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In