Full Content is available to subscribers

Subscribe/Learn More  >

Shear Modulus Degradation in Fiber Reinforced Laminates

[+] Author Affiliations
M. Salavatian, L. V. Smith

Washington State University, Pullman, WA

Paper No. IMECE2013-63035, pp. V009T10A001; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5638-3
  • Copyright © 2013 by ASME


Matrix damage, involving transverse and shear cracks, is a common failure mode for composite structures, yet little is known concerning their interaction. A modified Iosipescu coupon is proposed to study the evolution of the shear and transverse damage and their mutual effects. The layup and coupon geometry were selected in a way that controls the severity of the damage and allows the measurement of shear and transverse stiffness degradation directly. The results were compared to material degradation models where damage was dominated by matrix failure. While positive agreement was generally observed in the transverse direction, no model was able to predict the observed shear damage. A new elasticity solution was, therefore, proposed for the shear stress-strain field of a transversely cracked laminate. The approach used a classical shear lag theory with friction applied to the crack surfaces. Using the constitutive relations, the shear modulus reduction was found as a function of crack density, and showed good agreement with experimental measures.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In