0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Characterization of Adsorption and Transport Properties for Advanced Thermo-Adsorptive Batteries

[+] Author Affiliations
Hyunho Kim, Sungwoo Yang

Massachusetts Institute of Technology, Cambridge, MA

Shankar Narayanan, Ian McKay, Evelyn N. Wang

Massachussetts Institute of Technology, Cambridge, MA

Paper No. IMECE2013-65490, pp. V08CT09A070; 8 pages
doi:10.1115/IMECE2013-65490
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 8C: Heat Transfer and Thermal Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5636-9
  • Copyright © 2013 by ASME

abstract

Thermal energy storage has received significant interest for delivering both heating and cooling in electric vehicles, to minimize the use of the on-board electric batteries for heating, ventilation and air-conditioning (HVAC). An advanced thermo-adsorptive battery (ATB) is currently being developed, to provide both heating and cooling for an electric vehicle. We present a detailed thermophysical and physicochemical characterization of adsorptive materials for the development of the ATB. We discuss the feasibility of using contemporary adsorptive materials, such as zeolite 13X, by carrying out a detailed experimental characterization. In this study, zeolite 13X is combined with aluminum hydroxide (Al(OH)3) as a binder to improve the thermal conductivity. We also investigate the effect of densification on the overall transport characteristics of the adsorbent-binder composite material. Accordingly, the effective thermal conductivity, surface area, adsorption capacity and surface chemistry were characterized using the laser flash technique, surface sorption analyzer, thermogravimetric analyzer, and x-ray scattering technique. Thermal conductivity predictions of both zeolite 13X and its combination with the binder were made with existing conductivity models. Thermal conductivity in excess of 0.4 W/mK was achieved with the addition of 6.4 wt.% of Al(OH)3. However, a 10.6 % decrease in adsorption capacity was also observed. The experimental characterization presented herein is an essential step towards the development of the proposed ATB for next-generation electric vehicles.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In