Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Results of Pressure Drop Modeling During Flow Boiling in Open Microchannels With Uniform and Tapered Manifolds (OMM)

[+] Author Affiliations
Ankit Kalani, Satish G. Kandlikar

Rochester Institute of Technology, Rochester, NY

Paper No. IMECE2013-64463, pp. V08CT09A057; 7 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 8C: Heat Transfer and Thermal Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5636-9
  • Copyright © 2013 by ASME


Flow boiling with microchannel can dissipate high heat fluxes at low surface temperature difference. A number of issues, such as instabilities, low critical heat flux (CHF) and low heat transfer coefficients, have prevented it from reaching its full potential. A new design incorporating open microchannels with uniform and tapered manifold (OMM) was shown to mitigate these issues successfully. Distilled, degassed water at 80 mL/min is used as the working fluid. Plain and open microchannel surfaces are used as the test sections. Heat transfer and pressure drop performance for uniform and tapered manifold with both the surfaces are discussed. A low pressure drop of 7.5 kPa is obtained with tapered manifold and microchannel chip at a heat flux of 263 W/cm2 without reaching CHF. The pressure drop data is further compared with the homogenous model and the initial results are presented.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In