0

Full Content is available to subscribers

Subscribe/Learn More  >

Effective Temperature Jump Length and Influence of Axial Conduction for Thermal Transport Through Channels With Superhydrophobic Walls

[+] Author Affiliations
A. Cowley, D. Maynes, J. Crockett, B. W. Webb

Brigham Young University, Provo, UT

Paper No. IMECE2013-63858, pp. V08CT09A055; 11 pages
doi:10.1115/IMECE2013-63858
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 8C: Heat Transfer and Thermal Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5636-9
  • Copyright © 2013 by ASME

abstract

This paper presents a numerical investigation of thermal transport in a parallel-plate channel comprised of superhydrophobic walls. The scenario analyzed in this paper is laminar, fully developed, steady flow with constant properties. The superhydrophobic walls considered here have alternating micro-ribs and cavities aligned perpendicular to the flow direction. The cavities are assumed to be non-wetting and contain air. The thermal transport through the ribs is considered to have a constant heat flux while the thermal transport through the air/fluid interface over the cavity is considered to be negligible. Numerical results have been obtained over a range a Peclet numbers, cavity fractions, and relative rib/cavity widths. Results were also obtained where axial conduction was neglected and these results are compared to previous analytical work with excellent agreement. When the influence of axial conduction is not neglected, however, the results for local wall temperatures and Nusselt numbers show departure from the previous analytical results. The departure is more pronounced at low Peclet numbers and at large relative channel diameters. This paper provides a comparison over a wide range of parameters that characterize the overall influence of axial conduction. In general, the results show that the relative size of the cavity compared to the total rib/cavity module width (cavity fraction) and the flow Peclet number have a significant impact on the total thermal transport properties. Also, the rib/cavity module width compared to the hydraulic diameter affects the overall thermal transport behavior. Lastly, this paper explores the concept of a temperature jump length which is analogous to the hydrodynamic slip length. The ratio of temperature jump length to hydrodynamic slip length is presented in terms of cavity fraction, Peclet number, and relative size of the rib cavity module.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In