Full Content is available to subscribers

Subscribe/Learn More  >

Entrainment Into High Speed Air Jet Blowing Out From a Hole to Stagnant Water

[+] Author Affiliations
Yasuo Koizumi, Kohei Nago

Shinshu University, Ueda, Nagano, Japan

Akihiro Uchibori, Hideki Kamide, Hiroyuku Ohshima

Japan Atomic Energy Agency, O-arai, Ibaraki, Japan

Paper No. IMECE2013-65822, pp. V08CT09A036; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 8C: Heat Transfer and Thermal Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5636-9
  • Copyright © 2013 by ASME


Flow visualization experiments of an air jet in liquid were performed. The test vessel was 270 mm wide, 5 mm depth and 300 mm high. The air jet was blown vertically upward into stagnant liquid in the test vessel from a nozzle of 1 mm wide, 5 mm depth and 20 mm long which was located at the bottom of the test vessel. A flow state of the jet in the liquid was recorded with a high speed video camera at fastest 5×105 f/s. The test liquid was water and kerosene. Experiments were performed at atmospheric pressure and ambient temperature. Filament-like ears and wisps pulled out from the wavy interface were noticed on the interface between liquid and the air jet. The ears and wisps were broken off and entrained into the air jet. The droplets broke up to small entrainments. This process seemed quite similar to the entrainment process in the annular dispersed flow in a pipe. As the air jet velocity increased, the number of entrainments created by the air jet increased lineally and the smaller entrainments increased. The correlation for the entrainment diameter distribution which was developed for the annular dispersed two-phase flow in a pipe predicted well the present results. The correlations for the entrainment diameter developed for entrainments in the annular dispersed two-phase flow in a pipe and for droplets that were blown out into open space above a water pool by a nitrogen gas jet that blew into water vertically upwards considerably underpredicted the experimental results. Measured entrainment rates were considerably lower than the prediction of the correlation for the annular dispersed two-phase flow in a pipe.

Copyright © 2013 by ASME
Topics: Air jets , Water



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In