0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Laminar Natural Convection in Rectangular Enclosures of Different Aspect Ratios With and Without Aerosol Nanofluid

[+] Author Affiliations
Mosfequr Rahman, Andrew Hudson, Gustavo Molina, Valentin Soloiu

Georgia Southern University, Statesboro, GA

Paper No. IMECE2013-65056, pp. V08CT09A018; 11 pages
doi:10.1115/IMECE2013-65056
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 8C: Heat Transfer and Thermal Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5636-9
  • Copyright © 2013 by ASME

abstract

Natural convection heat transfer in rectangular enclosures is important in many real-world engineering applications. Included in these applications are the energy efficient design of buildings, operation and safety of nuclear reactors, solar collector design, passive energy storage, heat transfer across multi-pane windows, thermo-electric refrigeration and heating devices, and the design-for-mitigation of optical distortion in large-scale laser systems, environmental engineering and electronic packaging. A common industrial application of natural convection is free air cooling without the aid of fans and can happen on small scales such as computer chips to large scale process equipment. In addition to temperature gradient convection strength within the enclosure can vary due to the existence of nanoparticles with the base fluid.

The field of nanofluid research has been expanding in recent years. Most of the research performed for the purpose of heat transfer using nanofluids has been conducted on liquid based nanofluids, leaving the aerosol-based nanofluid research lagging. There is also a deficit in the research previously performed to develop a computer model of heat transfer enhancement using nanofluid. The transport of solid particles and liquid droplets in a fluid has long been a subject of great interest. Understanding, measuring, and quantifying the deposition of aerosol on walls is important in various sectors of science and technology. Some examples are the deposition of drugs and harmful substances in the nasal and respiratory tracts in medical science and engineering; deposition of particles and droplets in gas and steam turbines in power plant engineering; the atmospheric dispersal of pollutants and the determination of indoor air quality in environmental science; the transport and sedimentation of various substances in rivers in civil engineering; fouling of process and heat transfer equipments in process industries; and the transport of chemical aerosols in chemical process engineering. In this research work the case of pure air was first solved for 6 different aspect ratios, then the nanofluid was introduced and the resulting heat transfer was observed. The aerosol nanofluid used was composed of air with copper nanoparticles suspended in an enclosure. This procedure was repeated for multiple aspect ratios. This research also develops a functional computer model for heat transfer enhancement using nanofluid.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In