0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Thermal Conductivity and Shear Viscosity of Water-Cu Nanofluids Using Equilibrium Molecular Dynamics

[+] Author Affiliations
Tolga Akıner, Hakan Ertürk, Kunt Atalık

Boğaziçi University, Istanbul, Turkey

Paper No. IMECE2013-63558, pp. V08CT09A012; 10 pages
doi:10.1115/IMECE2013-63558
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 8C: Heat Transfer and Thermal Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5636-9
  • Copyright © 2013 by ASME

abstract

Nanofluids are new class of fluids which can be used for many engineering applications due to their enhanced thermal properties. The macroscopic modeling tools used for flow simulations usually rely on effective thermal and rheological properties of the nanofluids that can be predicted through various effective medium theories. As these theories significantly under-predict, using correlations based on experimental data is considered as the only reliable means for prediction of these effective properties. However, the behavior might change significantly once the particle material or base fluid change due to different particle fluid interactions in the molecular level. One of the most promising means of modeling effective properties of the nanofluids is the molecular dynamics simulations where all the intermolecular effects can be modeled. This study investigates equilibrium molecular dynamics simulation of the water-Cu nanofluids to predict the thermal and rheological properties. The molecular dynamics simulation is carried out to achieve a thermodynamic equilibrium, based on a state that is defined by targeted thermodynamic properties of the system. The Green-Kubo method is used to predict the thermal conductivity and viscosity of the system. The study considers the use of different combining rules such as Lorentz-Berthelot and sixth-power rules for defining the inter-atomic potentials for water modeled by SPC/E and nanoparticles modeled by Lennard-Jones potential. The predicted effective properties that are thermal conductivity and shear viscosity are then compared with experimental data from literature. The predicted transport properties at different temperatures and particle concentrations are compared to experimental data from literature for model validation.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In