0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Fluid Behaviour and Mixing Efficiency in Predefined Serpentine Micro-Fracture System

[+] Author Affiliations
Gorakh Pawar, Ilija Miskovic, Manjunath Basavarajappa

University of Utah, Salt Lake City, UT

Paper No. IMECE2013-65124, pp. V07BT08A026; 7 pages
doi:10.1115/IMECE2013-65124
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7B: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5632-1
  • Copyright © 2013 by ASME

abstract

Scientific research and development in the field of microfluidics and nanofluidics technology has witnessed a rapid expansion in recent years. Microfluidic and nanofluidic systems are finding increasing application in wide spectrum of biomedical and engineering fields, including oil and gas technology. Fluid flow characterization in porous geologic media is an important factor for predicting and improving oil and gas recovery. By developing understanding about the propagation of hydraulic fracturing fluid constituents in irregular micro- and nano-structures, and their multiphase interaction with reservoir fluids (e.g. mixing of supercritical CO2 with oil or gas) we can significantly improve efficiency of the current oil and gas (O&G) extraction process and reduce associated environmental impacts. In present paper, mixing of hydraulic fracturing fluid constituents in three dimensional serpentine microchannel system is simulated in CFD environment and results are used to evaluate mixing efficiency for different fracturing fluid compositions. In addition, pressure drop along the length of serpentine micro-channel is evaluated. Serpentine micro-channels considered in this study consist of periodic symmetrical and asymmetrical proppant particles, placed on both sides of the channel over the full length of the channel, to simulate realistic geometrical constraints usually seen in geological fractures. The fluid flow is characterized as a function of the proppant particle radius by varying size of adjacent proppant particles. Further, the flow is characterized by varying distance between adjacent proppant particles. Overall, this study will be primarily helpful to gain fundamental understanding of fracturing fluid mixing in micro-fractures, similar to real geologic media. In addition, this study will provide an insight into variations of fracturing fluid mixing efficiency, and pressure drop in micro-fracture systems as a function of geometry of the proppant particles at different flow rates.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In