0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Simulation of Gas-Liquid Two-Phase Flow Through an Orifice in Millimeter-Scale Rectangular Channel

[+] Author Affiliations
Fuad Ismayilov, Olusegun J. Ilegbusi

University of Central Florida, Orlando, FL

Paper No. IMECE2013-65283, pp. V07AT08A067; 8 pages
doi:10.1115/IMECE2013-65283
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

A numerical model is developed and used to simulate gas-liquid two-phase flow through a plate orifice in a millimeter-scale channel. The channel width is 50 mm and the height is varied from 1.00 mm to 2.00 mm. The contraction ratio and thickness of the orifice are varied over the range 0.04–0.4 and 5–20 mm respectively. The model utilized is based on the multiphase-mixture principle in which transport equations are solved for the mixed phase velocities with allowance for interpenetration of phases and intra-phase transfer processes. The predicted velocity profiles are successfully validated by comparison with the available experimental data for the mixture velocity. The predictions also extend beyond the experimental data to provide the detailed effect of contraction ratio on the flow and gas fraction distribution in the channel. In the range of parameters investigated, the predictions indicate that the flow in such channels will produce no wake in the lee of the orifice for contraction ratios >0.2.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In