0

Full Content is available to subscribers

Subscribe/Learn More  >

Front Wave Prediction in Water Hammer Phenomena Involving Two-Phase Flows

[+] Author Affiliations
Alina Bogoi, Radu D. Rugescu

University Politehnica of Bucharest, Bucharest, Romania

Jean Marie Seynhaeve, Michel Giot

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Oliviu Sugar

Ecole de Technologie Superieure, Montreal, QC, Canada

Paper No. IMECE2013-65838, pp. V07AT08A049; 7 pages
doi:10.1115/IMECE2013-65838
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

A genuine mathematical model for one dimensional, unsteady, two phase (liquid-gas) flows is presented that intends to solve the complex problem of two phase behavior of fluids. The mechanism of the model describes the fluid flow characteristics of the mixture, supposing that the conditions for homogeneous vaporization are fulfilled and the condensate fraction of the composite fluid keeps constant. In particular, the equation of momentum conservation for the gas phase is derived from the Voinov equation. For its domain of validity (bubbly flows), the model is of hyperbolic type and can be written in the conservative form. The numerical results obtained for the water hammer phenomena show that the present work is able to supply accurate results, at least of the same degree of confidence as the results provided by an ordinary, commercial CFD code, still with a considerable reduction in computational time.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In