0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Single Phase Liquid Mixing in Stirred Tanks Fitted With Rushton Turbine and Flotation Impeller

[+] Author Affiliations
Manjunath Basavarajappa, Sanja Miskovic

University of Utah, Salt Lake City, UT

Paper No. IMECE2013-65277, pp. V07AT08A047; 9 pages
doi:10.1115/IMECE2013-65277
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

Mixing is a complex process and usually involves continuous reduction of length and time scales associated with fluid(s) being mixed. Mixing is an essential process and finds widespread application in a range of industries. Due to lack of understanding of the mixing process, industries lose a significant amount of money contributed by increased power consumption and longer process times. In this work a thorough comparison of flow, mixing, and turbulence characteristics of Rushton turbine (RT) and a flotation impeller, variation of disc turbine, is performed for single phase flows using Computational Fluid Dynamics (CFD). The fluid used is water. Base case validation and model verification is performed by comparing our CFD results with widely accepted Laser Doppler Anemometry (LDA) experimental results for the Rushton Turbine. Multiple reference frame (MRF) technique, a pseudo-steady modeling method, is used to model the impeller motion on flow characteristics at different Reynolds numbers (Re). Turbulence closure is provided using RANS based two equation realizable k-ε turbulence model. Grid independence studies are carried out a sufficiently fine grid is selected to capture the fine flow structures close to the impeller, though radial velocity close to impeller was under-predicted compared to experimental results. Effects of finite impeller blade and disc thicknesses on the local flow field, which are commonly modeled as thin surfaces, are explored. Various tank geometric variations, like different impeller clearances, and impeller diameter to tank diameter ratios (DI/DT), are also investigated. The numerical results will help in understanding the effect of impeller design on local and bulk flow characteristics and turbulence anisotropy close to the impeller. The results from this work will direct the tank and impeller design choices for two phase solid-liquid flows for future investigations.

Copyright © 2013 by ASME
Topics: Impellers , Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In