Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Discharge Header and a Working Platform for a Research Reactor With a CFD Model

[+] Author Affiliations
Kyoungwoo Seo, Hyungi Yoon, Dae-young Chi, Seonghoon Kim, Juhyeon Yoon

KAERI, Daejeon, South Korea

Paper No. IMECE2013-62143, pp. V07AT08A035; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME


Most research reactors are designed as an open-pool type and the reactor is located on the bottom of the open-pool. The reactor in the pool is connected to the primary cooling system, which is designed for adequate cooling of the heat generated from the reactor core. One of the characteristics of an open-pool type research reactor is that the primary coolant after passing through the reactor core and the primary cooling system (PCS) is returned to the reactor pool. Because the primary coolant contains many kinds of radionuclides, the research reactor should be designed to protect the radionuclides from being released outside the pool by a stratified stable water layer, which is formed between a hot water layer and cold water near the reactor and prevents the natural circulation of water in the pool. In this study, additional components such as a discharge header and a working platform inside the pool were developed to help diminish the radiation level to the pool top. To discharge coolant stably inside the reactor pool, a discharge header was installed at the end of the pool inlet pipe. Many holes were made in the discharge header to discharge the coolant slowly and minimize the disturbance of the hot water layer by the flow inside the pool. The working platform was also equipped inside the reactor pool to remove the convective flow near the pool top.

The commercially available CFD code, ANSYS CFD-FLEUNT, was used to specifically design the discharge header and working platform for satisfying the requirement of the pool top radiation level. The computations were conducted to analyze the flow and temperature characteristics inside the pool for several geometries using an SST k-ω turbulent model and cell modeling, which were conducted to isolate the root cause of these differences and the given inlet conditions. The discharge header and working platform were designed using the CFD results.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In