0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Friction in Bi-Dimensional Pipe Flow Using Non Conventional Constitutive Models

[+] Author Affiliations
Giuseppe Catania

University of Bologna, Bologna, Italy

Silvio Sorrentino

University of Modena and Reggio Emilia, Modena, Italy

Paper No. IMECE2013-66617, pp. V07AT08A034; 10 pages
doi:10.1115/IMECE2013-66617
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

The design of hydraulic transmission lines for control and actuation requires accurate knowledge of their dynamic response: some standard techniques are known to obtain a consistent dynamic model of a fluid line, including the contribution of inertia, compressibility and friction.

In this paper an efficient procedure is developed for simulating the dynamic response in both the frequency and time domains, focusing the attention on the modal analysis of a discretized model of a fluid line. A bi-dimensional approach is adopted, modeling the laminar flow frequency-dependent friction by means of non-integer order differential laws, which may improve the accuracy of the simulated responses in comparison with more traditional Newtonian models.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In