Full Content is available to subscribers

Subscribe/Learn More  >

Channel Flow of a Mixture of Granular Materials and a Fluid

[+] Author Affiliations
Wei-Tao Wu

Carnegie Mellon University, Pittsburgh, PA

Nadine Aubry

Northeastern University, Boston, MA

Mehrdad Massoudi

U. S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA

Paper No. IMECE2013-65385, pp. V07AT08A033; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME


In this paper, we consider the three dimensional flow of granular materials and a viscous fluid in a channel. We use Mixture Theory to treat this problem as a two-component system [1]: One component is the solid particles (granular materials), such as sand, coal particles or red blood cells; the solid particles are modeled as a generalized Reiner-Rivlin type fluid derived by Massoudi [2], which not only considers the effects of volume fraction but also has a viscosity which is shear rate dependent. The other component, the host fluid, is assumed to behave as a linear viscous fluid, such as water, oil or plasma. For the interaction forces, the effect of different hindrance functions for the drag force is studied; moreover a generalized form of the expression for the hindrance function is suggested. For studying this two-component system numerically, a three dimensional CFD solver based on OpenFOAM® has been developed. Applying this solver, a specific problem (blood flow) has been studied for which our numerical results and experimental data [3] show good agreement.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In