Full Content is available to subscribers

Subscribe/Learn More  >

Self-Assembly of Monolayers of Submicron Sized Particles on Thin Liquid Films

[+] Author Affiliations
Shriram Pillapakkam

Temple University, Philadelphia, PA

N. A. Musunuri, P. Singh

New Jersey Institute of Technology, Newark, NJ

Paper No. IMECE2013-65324, pp. V07AT08A031; 6 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME


In this paper, we present a technique for freezing monolayers of micron and sub-micron sized particles onto the surface of a flexible thin film after the self-assembly of a particle monolayer on fluid-liquid interfaces has been improved by the process we have developed where an electric field is applied in the direction normal to the interface. Particles smaller than about 10 microns do not self-assemble under the action of lateral capillary forces alone since capillary forces amongst them are small compared to Brownian forces. We have overcome this problem by applying an electric field in the direction normal to the interface which gives rise to dipoledipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another liquid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In