0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Analysis on Piping Networks Using the Finite Element Method

[+] Author Affiliations
Carlos Luis Moreno

Universidad Simón Bolívar, Valle de Sartenejas, Venezuela

Paper No. IMECE2013-63553, pp. V07AT08A018; 14 pages
doi:10.1115/IMECE2013-63553
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

The objective of this work is to apply the Finite Element Methodology (F.E.M.) to several piping systems, using an incompressible working fluid, in order to calculate the volumetric flow on each element and the piezometric load on each node of the network. To accomplish this goal a computational code was designed using Fortran Computational Language. Such a code consists of a main program and six subroutines. The input variables are general data of the network including the number of pipes, the number of nodes, the piezometric load values on nodes where they are constant (tanks for example), demanding flows in those nodes where the fluid is removed from the system, a connectivity table indicating the assumed flow direction in each pipe, and the number of pumps with respective parabolic curve coefficients. Program data also included both the maximum number of iterations and tolerance allowed. Fluid properties such as kinematic viscosity, density and pipe features such as length, diameter and absolute rugosity are also required. The output data include pipe volumetric flows and piezometric load on variable static pressure nodes.

In this work, three different network systems were analyzed: 51-, 63- and 65-element networks. All were examples taken from the bibliography. The Finite Element Methodology results were first validated with real data, and then compared with the other results coming from the Hardy-Cross, Newton-Raphson and Linear Methods. The comparison was based on convergence speed and numerical stability. It is concluded that the methodology called Finite Element Methodology requires a smaller number of iterations than the Hardy-Cross, Linear and Newton-Raphson Methods. Another advantage of the Finite Element Methodology is that there is no need to assign the flow initial values that satisfy the Continuity Equation on each node of the piping network before running the program. Also, no loops establishing is needed. In addition, the designed code permits calculations for networks that present both booster and feed pumps. The importance of this work rests on the fact that nowadays it is necessary for piping network flow analysis to use computational simulation in order to design systems more efficiently and economically. Furthermore, this work is important for network construction as well as the satisfaction of consumer demand on a local community level, taking into account prevailing normative requirements. This paper, consequently, aims to contribute to progress in these areas.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In