0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Modeling of Turbulence

[+] Author Affiliations
A. K. Mazher

Farawila et al., Inc., Richland, WA

Changki Mo

Washington State University Tri-Cities, Richland, WA

Paper No. IMECE2013-62330, pp. V07AT08A009; 8 pages
doi:10.1115/IMECE2013-62330
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

This paper presents a new systematic and generalized approach to model turbulence dynamically. The suggested approach is based on the variational technique to solve a system of equations where the number of unknowns is larger than the number of equations. Turbulence closure problem results when averaging the Navier-Stokes (N-S) equations. Averaging transforms the N-S equations from a determinate set of equations describing turbulent flow field to an indeterminate set of equations that need additional information. Unknown terms, Reynolds stresses, appear as a results of averaging; and the solution of the averaged N-S equations depends on the proper selection of Reynolds stresses. In the dynamic modeling formulation of turbulence, the Reynolds stresses are selected to produce a best solution of the averaged N-S equations. The Reynolds stresses are computed via optimizing a performance index ‘I’. In the optimization process the averaged N-S equations are considered as constraints. The performance index ‘I’ is defined as a measure of the quality of solution. Averaging can be considered as a process by which we lose some information about the flow field. The lost information appears partially in the unknown terms “Reynolds stresses”. Hence, the performance index should include some measure of information losses which occur as the result of averaging. Classical approach does not rely on the N-S equations, itself as a complete description of turbulence, to derive a suitable turbulence models. The new concept will use the N-S equations, combined with the physics of turbulence, for an optimal selection of turbulence model through ‘I’. In this approach the model is not specified in advance, but it will be developed dynamically with the solution.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In