0

Full Content is available to subscribers

Subscribe/Learn More  >

Harvesting Downstream Energy to Improve Efficiency: Creating Apparent Discharge Coefficients of Jet Nozzles Greater Than 1.3

[+] Author Affiliations
Jim B. Surjaatmadja, Billy W. McDaniel

Halliburton, Duncan, OK

Bharat B. Pawar

Boots and Coots—A Halliburton Service, Duncan, OK

Paper No. IMECE2013-62062, pp. V07AT08A008; 9 pages
doi:10.1115/IMECE2013-62062
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 7A: Fluids Engineering Systems and Technologies
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5631-4
  • Copyright © 2013 by ASME

abstract

Fluid movement devices use upstream energy to move fluid from one location to another. Flow nozzles that slightly accelerate fluid motion, especially into the same direction, often exhibit discharge coefficients greater than 1.0. Jet nozzles, however, by definition, create a jet stream that is much faster than the upstream fluid, often exceeding 100-fold higher velocities. Energy used to move this fluid is often very high; jetting efficiencies are generally less than 1.0 and will only approach 1.0 if the shape of the entrance is such that there is no “vena contracta” within its flow regime inside the nozzle.

High-pressure nozzles require high horsepower to generate high-velocity fluids. As is commonly performed, power is created using high-powered pumping equipment. Oftentimes, nozzles are used to jet in locations that have high ambient pressures, such as at the bottom of the ocean or inside a deep oil well. At these locations, the hydrostatic pressures could be very high. Pressure at the upstream side of the nozzle would be even higher.

This paper discusses the design and use of a unique nozzle that uses the hydrostatic (potential) energy to accelerate the fluid velocity of the jet. In essence, the nozzle uses the downstream energy to perform part of its job, thus, substantially reducing the upstream pressure requirement. This phenomenon was proven to occur using CFD analysis. Laboratory tests have shown apparent discharge coefficients between 1.38 and 1.69, depending on the downstream pressure.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In