0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Thickness of Zirconium Liner on Stress-Strain Characteristics of U10Mo Monolithic Plates

[+] Author Affiliations
Hakan Ozaltun

Idaho National Laboratory, Idaho Falls, ID

Robert M. Allen

Mississippi State University, Mississippi State, MS

You Sung Han

Purdue University, West Lafayette, IN

Paper No. IMECE2013-66595, pp. V06BT07A059; 15 pages
doi:10.1115/IMECE2013-66595
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME

abstract

The effects of the thickness of Zirconium liner on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation processes were studied. Monolithic plate-type fuel elements is a new fuel form being developed for research and test reactors to achieve higher uranium densities which allows the use of low-enriched uranium fuel in reactor core. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. Early RERTR experiments indicated that the presence of an interaction layer between the fuel and cladding materials causes mechanical problems. To minimize the fuel/cladding interaction, employing a diffusion barrier between the cladding and the fuel materials was proposed. Current monolithic plate design employs a 0.025 mm thick, 99.8% pure annealed Zirconium diffusion barrier between the fuel foil (U10Mo) and the cladding materials (AL6061-O). To benchmark the irradiation performance, a number of plates were irradiated in the Advanced Test Reactor (ATR) with promising irradiation performance. To understand the effects of the thickness of the Zirconium diffusion barrier on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P7A0) was selected and simulated. Both fabrication and irradiation stages were considered. Simulations were repeated for various Zirconium thicknesses to understand the effects of the thickness of the diffusion barrier. Results of fabrication simulations indicated that Zirconium thickness has noticeable effects on foil’s stresses. Irradiation simulations revealed that the fabrication stresses of the foil would be relieved rapidly in the reactor. Results also showed that Zirconium thickness has little or no effects on irradiation and shutdown stresses.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In