0

Full Content is available to subscribers

Subscribe/Learn More  >

A Study on Doppler Weighting Factor for Control Element Assembly Ejection Accident by Using Newly Developed Nuclear Design Code and Non-LOCA Methodology

[+] Author Affiliations
Kyungmin Yoon, Chansu Jang, Jooil Yoon

KEPCO Nuclear Fuel, Daejeon, Korea

Paper No. IMECE2013-65996, pp. V06BT07A058; 3 pages
doi:10.1115/IMECE2013-65996
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME

abstract

Among Reactivity Initiated Accidents (RIAs) for Pressurized Water Reactor (PWR), Control Element Assembly Ejection (CEAE) accident causes the rapid positive reactivity insertion to the core. It causes an asymmetric power distortion which results in the rising of local fuel temperature, fuel pellet thermal expansion and cladding ballooning or rupture. In the CEAE accident, Doppler feedback has a profound effect because the negative reactivity insertion due to the rise of fuel temperature reduces the core power after rapid power excursion. But the Doppler reactivity can’t be calculated properly in the safety analysis code, using point kinetics model, because the point kinetics model is not able to consider spatial-time effect of the sudden rise in local fuel temperature on Doppler feedback calculation during CEAE accident. And then the excessively high core power which results from the underestimated Doppler feedback would make more severe results such as PCMI fuel failure, fuel cladding rupture and serious DNB fuel failure. Therefore, Doppler Weighting Factor (DWF) is needed for the safety analysis of CEAE accident to compensate a missing spatial-time effect on Doppler feedback calculation. In this study, the adequacy of the application of DWF for APR1400 was evaluated by using nuclear design code called ASTRA (Advanced Static and Transient Reactor Analyzer)[1] and a methodology called ISAM (Integrated Safety Analysis Methodology)[2]. ASTRA is the 3D nuclear design code newly developed by KNF and has various functions such as the static core design, the transient core analysis and the operational support. ISAM is the methodology which is newly developed by KNF to perform the Non-LOCA safety analysis by using RETRAN[3] code which is widely used in the transient analysis and based on the point kinetics model.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In