0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhancement of the Optical Efficiency in Organic and Non-Organic Photovoltaic Cells With Inclusion of Metallic Nanoparticles

[+] Author Affiliations
Ivan I. Muñoz

SIRVE S.A., Santiago, Chile

Amador M. Guzmán

Pontificia Universidad Católica de Chile, Santiago, Chile

Andres J. Diaz

Universidad Diego Portales, Santiago, Chile

Paper No. IMECE2013-62023, pp. V06BT07A038; 10 pages
doi:10.1115/IMECE2013-62023
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME

abstract

The enhancement of the optical efficiency in both, organic and non-organics photovoltaic cells, with inclusion of metallic nanoparticles that induces surface plasmon resonant effects, is determined and studied by computational simulations. The Maxwell equations are solved in the frequency domain using a Finite Element Methods (FEM) based computational program. The absorption of the active layer is directly obtained and weighted by the corresponding solar spectrum. Then, the photovoltaic cell optical efficiency is ultimately determined.

This investigation demonstrated that for photovoltaic cells without nanoparticles, there exist three optimal configurations: an organic glass/PEDOT:PSS/CuPc:PTCBI/Ag cell; and non-organic glass/ ITO/CuInSe2/Ag and glass//ITO/CdTe/Ag cells. The numerical simulations show that optimal efficiency depends on the cell material and positioning of the nanoparticle within the cell. For an organic cell, the optimal efficiency was obtained with silver nanoparticles positioned at the bottom of the active layer (position 3); whereas, for non-organic cells, the optical efficiency was obtained with aluminum nanoparticles positioned between the glass and TCO layers (position 1).

From the three dimensional simulations, it was determined that silver nanoparticles with a diameter of 80nm within a cubic cell of period 230nm positioned in position 3 of the active layer of CuPc:PTCBI of an organic photovoltaic cell allow the augmentation of the efficiency such that a similar efficiency can be obtained with a cell of the same material but without nanoparticles and an active layer thickness 94% higher than with nanoparticles. For aluminum nanoparticles with a diameter of 30 nm in a cubic cell of period 40nm positioned in position 1 of the active layer de CuInSe2 of a non-organic photovoltaic cell, the efficiency is augmented to such a value that this value can be obtained with a non-organic photovoltaic cell with no nanoparticles and a an active layer thickness 137% higher than with nanoparticles.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In