Full Content is available to subscribers

Subscribe/Learn More  >

Pulsed Heat Transfer for Thermal Maximum Power Point Tracking

[+] Author Affiliations
Ian Salmon McKay, Evelyn N. Wang

Massachussetts Institute of Technology, Cambridge, MA

Paper No. IMECE2013-62998, pp. V06BT07A032; 10 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME


This paper presents a new method for enhancing thermal energy harvesting via pulsed heat transfer. By acting as a variable thermal resistance that theoretically generates no entropy, a pulsed thermal connection allows calibration of the effective thermal resistance of an energy harvesting system. By adjusting the frequency and duty cycle of the pulsed heat transfer, the method allows an energy harvester to be continuously optimized for a variable incident heat flux. In this paper, the analysis of a generalized model shows how the pulse strategy theoretically allows any heat engine-heat sink pair to work at the same power and efficiency as a 1:1 thermal resistance-matched engine-heat sink pair of equal or greater total thermal resistance. Experiments with a mechanical thermal switch validate this model, and show how the pulse strategy can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80% with no increase in the hot-side maximum temperature, although at reduced total power. At a 1:2 engine-sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy could be implemented to improve of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.

Copyright © 2013 by ASME
Topics: Heat transfer



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In