Full Content is available to subscribers

Subscribe/Learn More  >

Constrained-Equilibrium Modeling of Methane Oxidation in Air

[+] Author Affiliations
Ghassan Nicolas, Hameed Metghalchi

Northeastern University, Boston, MA

Mohammad Janbozorgi

University of Southern California, Los Angeles, CA

Paper No. IMECE2013-62138, pp. V06BT07A024; 10 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME


The Rate-Controlled Constrained-Equilibrium (RCCE) has been further developed and applied to model methane/air combustion process. The RCCE method is based on local maximization of entropy or minimization of a relevant free energy at any time during the non-equilibrium evolution of the system subject to a set of constraints. The constraints are imposed by slow rate-limiting reactions. Direct integration of the rate equations for the constraint potentials has been employed. Once the values of the potentials are obtained, the concentration of all species can be calculated. A set of constraints has been developed for methane/air mixtures in the method of Rate-Controlled Constrained-Equilibrium (RCCE). The model predicts the ignition delay times, which have been compared to those predicted by detailed kinetic model (DKM) and with shock tube experimental measurements. The DKM includes 60 H/O/C1–2/N species and 352 reactions. The RCCE model using 16 constraints has been applied for combustion modeling in a wide range of initial temperatures (900–1200 K), pressures (1–50 atmospheres) and fuel-air equivalence ratio (0.6–1.2). The predicted results of using RCCE are within 5% of those of DKM model and are in excellent agreement with experimental measurements in shock tubes.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In