0

Full Content is available to subscribers

Subscribe/Learn More  >

Perspectives on Lattice Boltzmann Modeling of Transport Processes With Electrochemical Reactions in SOFCs

[+] Author Affiliations
Hedvig Paradis, Martin Andersson, Bengt Sundén

Lund University, Lund, Sweden

Paper No. IMECE2013-62159, pp. V06BT07A014; 13 pages
doi:10.1115/IMECE2013-62159
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME

abstract

Lattice Boltzmann method (LBM) is alternative computational method to the traditional computational fluid dynamic (CFD) methods. LBM has the ability to with straightforward computational procedure to handle the detail activity at microscale well for simulation of different transport processes. In this study the focus is on the effects of electrochemical reactions and transport processes in an anode of Solid Oxide Fuel Cell (SOFC) at microscale. The electrochemical reactions are captured at specific sites where the so-called three-phase boundaries (TPB) are present. The porous modeling domain is created with randomly placed spheres of two different sizes to resemble the materials Ni and YSZ for the part of the anode close to the electrolyte. The simulated transport processes are mass, heat, momentum and charge transfer with electrochemical reactions. These are evaluated with the software tools Palabos and MATLAB.

It is concluded that LBM can be used to evaluate the microscopic effect of electrochemical reactions on the transport processes. Case studies are carried out on the current density and the concentration distribution of H2 by changing the porosity, percentage of active reaction sites and particle size. It is shown that an increase in porosity decreases the current density throughout the porous domain while an increase in percentage of active sites has a positive increase in current density. The concentration of H2 decreases throughout the cell when the porosity is increased from 30% to 50%. As a suggestion for future improvements, it might be a good idea to have the active reaction sites placed out in a graded manner with a high density of reaction sites where it is needed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In