0

Full Content is available to subscribers

Subscribe/Learn More  >

On-Line Calculation Method of Exhaust Steam Humidity Based on BP Neural Network for Steam Turbine

[+] Author Affiliations
Likun Zheng

Guangdong Electric Power Science Research Institute, Guangzhou, Guangdong, China

Chang Chen, Danmei Xie, Hengliang Zhang, Yanzhi Yu

Wuhan University, Wuhan, Hubei, China

Paper No. IMECE2013-62735, pp. V06BT07A009; 5 pages
doi:10.1115/IMECE2013-62735
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5629-1
  • Copyright © 2013 by ASME

abstract

For condensing turbine, steam exhaust point is in wet steam area. The exhaust steam humidity of steam turbine is difficult to get due to lacking of effective measuring method. Calculation of exhaust steam humidity has always been one of the key parts of the analysis of thermal power units. The main factors affecting exhaust steam humidity are turbine load and turbine exhaust pressure etc, and they are of non-linearity. This paper develops a calculation method to calculate exhaust steam humidity based on BP neural network. Taking a N1000-25/600/600 ultra-supercritical (USC) steam turbine as an example, the exhaust steam humidity is calculated and the results show that the method has a good accuracy to meet the needs of the engineering application.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In