Full Content is available to subscribers

Subscribe/Learn More  >

Modelling and Analysis of the Effect of Angular Velocity and Acceleration on Brain Strain Field in Traumatic Brain Injury

[+] Author Affiliations
Hesam Hoursan, Mohammad Taghi Ahmadian, Hamid Naghibi Beidokhti

Sharif University of Technology, Tehran, Iran

Ahmad Barari

University of Ontario Institute of Technology, Oshawa, ON, Canada

Paper No. IMECE2013-63053, pp. V03AT03A006; 7 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 3A: Biomedical and Biotechnology Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5621-5
  • Copyright © 2013 by ASME


Traumatic brain injury (TBI) has long been known as one of the most anonymous reasons for death around the world. A presentation of a model of what happens in the process has been under study for many years; and yet it remains a question due to physiological, geometrical and computational complications. Although the facilities for soft tissue modeling have improved and the precise CT-imaging of human head has revealed novel details of brain, skull and the interface (the meninges), a comprehensive FEM model of TBI is still being studied. This study aims to present an optimized model of human head including the brain, skull, and the meninges after a comprehensive study of the previous models. The model is then used to investigate the effects of various sudden velocity-acceleration impulses on the strain field of the brain by using FE method. Next, the results are summed up and compared with an existing criterion on damage threshold in the brain during trauma. To reach this aim, a full geometrical model of a 30-year-old patient’s head has been generated from CT-scan and MR data. The model has been exposed to 20 angular velocity-acceleration pulses. Subsequently, the changes in the strain field have been compared with the results obtained in the previous studies yielding acceptable accordance with a major previous criterion. The results also show that certain criteria can be generated on the threshold of damage in the brain.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In