Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Process Parameters on Formation of Hybrid Tissue Constructs

[+] Author Affiliations
Karen Chang Yan, Pamela Hitscherich, James Ferrie

The College of New Jersey, Ewing, NJ

Paper No. IMECE2013-66430, pp. V03AT03A043; 2 pages
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 3A: Biomedical and Biotechnology Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5621-5
  • Copyright © 2013 by ASME


Tissue engineering is a promising aspect of regenerative medicine that is aimed at constructing functional tissues and organs. While progresses in tissue engineering have led successful clinic applications, challenges remain for more complex tissues/organs that require concerted efforts from multiple types of cells. One of the key issues in building replacements for complex tissues/organs is to mimic the organ’s complex natural organization using a mixture of engineered materials and living cells [1]. Electrospinning has shown promise as a technique to create the microenvironment necessary for cell growth and proliferation for tissue engineering applications[2–4], while multiple fabrication methods have been developed to manipulate live cells(e.g. cell printing) [5–7]. To this end, a system integrating polymer electrospinning technique and pressure-driven cell deposition method is currently under development for forming hybrid tissue constructs with living cells and polymers. This study focuses on examining morphology of electrospun fibers as function of processing parameters including working distance and solution flow rate.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In