0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Virtual Coil Model for Blood Flow Simulation in Coil-Embolized Aneurysms

[+] Author Affiliations
Tomohiro Otani, Satoshi Ii, Shigeo Wada

Osaka University, Toyonaka, Osaka, Japan

Toshiyuki Fujinaka, Masayuki Hirata, Junko Kuroda, Katsuhiko Shibano

Osaka University, Suita, Osaka, Japan

Paper No. IMECE2013-64435, pp. V03AT03A035; 7 pages
doi:10.1115/IMECE2013-64435
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 3A: Biomedical and Biotechnology Engineering
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5621-5
  • Copyright © 2013 by ASME

abstract

Hemodynamics is considered to be one of the indices to evaluate the effects of the treatment by coil embolization for cerebral aneurysms. For the sake of detailed analysis of hemodynamics in coil-embolized aneurysms, we develop a virtual coil model based on the mechanical theory that the coil deforms toward minimizing the elastic energy, and represent a realistic configuration of the embolized coils in the aneurysm by the insertion simulation. Then, the blood flow analysis is done by solving the N.S. and continuity equations numerically with the finite volume method using polyhedral mesh. The coil insertion simulation demonstrated that almost uniform distribution of the coil in the aneurysm was achieved at over 10% packing density of the coil. The blood flow analysis using the virtual coil model showed that the flow momentum inside the aneurysm was reduced to less than 10% by coil embolization with a packing density over 20%. In comparison to the simulation results using a porous media model for the embolized coil, there was no significant difference in the reduction ratio of the flow momentum in the aneurysm by coil embolization. However, local flow dynamics evaluated by the flow vorticity was different in the virtual coil model and the porous media model, in particular at the neck region of the aneurysm.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In