0

Full Content is available to subscribers

Subscribe/Learn More  >

Complex Sparse-Filled Mechanical Property Prediction Methods for Direct Digital Manufacturing

[+] Author Affiliations
David N. Kordonowy, Sydney A. Giblin

Aurora Flight Sciences, Cambridge, MA

Paper No. IMECE2013-65426, pp. V02AT02A014; 9 pages
doi:10.1115/IMECE2013-65426
From:
  • ASME 2013 International Mechanical Engineering Congress and Exposition
  • Volume 2A: Advanced Manufacturing
  • San Diego, California, USA, November 15–21, 2013
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5618-5
  • Copyright © 2013 by ASME

abstract

This paper describes how direct digital manufacturing mechanical properties can be analytically estimated for structural use and the associated analytical and test methods used in the design and fabrication of airframes manufactured using additive manufacturing. Complex shape structures, which are now possible using additive manufacturing, and their associated mechanical properties can be predicted in order to allow operationally safe and highly predictive structures to be fabricated. Direct digital manufacturing allows for much greater flexibility and control over the design of airframes, leading to more structurally efficient and capable airframes. These advantages are revealed by application of direct digital manufacturing methods on a series of fixed wing subsonic transport concept wind tunnel scale models that are carried out as a part of the NASA N+3 program, which is paving the way for next generation aircraft that are highly fuel efficient, low-noise, and low-emission. Verification of these methods through test shows excellent correlation that provides reliability in complex sparse filled additive manufacturing design. The outcome of this is a knowledge base, which can then be applied to a system in operation. The combined potential of a flexible manufacturing system and proven predictive analysis tools shorten development time and expand the opportunities for mass customization. These combined benefits enable industry to fabricate affordable highly optimized custom products while concurrently reducing the cycle times required to field new products.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In