0

Full Content is available to subscribers

Subscribe/Learn More  >

In Vivo Tibiofemoral Contact Kinematics and Contact Forces During Dynamic Weight-Bearing Activities Following Total Knee Arthroplasty

[+] Author Affiliations
Kartik M. Varadarajan

Massachusetts General Hospital/Harvard Medical School, Boston, MAMassachusetts Institute of Technology, Cambridge, MA

Angela Moynihan, Harry E. Rubash, Guoan Li

Massachusetts General Hospital/Harvard Medical School, Boston, MA

Darryl D’Lima, Clifford W. Colwell

Scripps Clinic Center for Orthopaedic Research and Education, La Jolla, CA

Paper No. SBC2008-192613, pp. 859-860; 2 pages
doi:10.1115/SBC2008-192613
From:
  • ASME 2008 Summer Bioengineering Conference
  • ASME 2008 Summer Bioengineering Conference, Parts A and B
  • Marco Island, Florida, USA, June 25–29, 2008
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4321-5
  • Copyright © 2008 by ASME

abstract

Accurate knowledge of in vivo articular contact kinematics and contact forces is required to quantitatively understand factors limiting life of total knee arthroplasty (TKA) implants, such as polyethylene component wear and implant loosening [1]. Determination of in vivo tibiofemoral contact forces has been a challenging issue in biomechanics. Historically, instrumented tibial implants have been used to measure tibiofemoral forces in vitro [2] and computational models involving inverse dynamic optimization have been used to estimate joint forces in vivo [3]. Recently, D’Lima et al. reported the first in vivo measurement of 6DOF tibiofemoral forces via an instrumented implant in a TKA patient [4]. However this technique does not provide a direct estimation of tibiofemoral contact forces in the medial and lateral compartments. Recently, a dual fluoroscopic imaging system has been used to accurately determine tibiofemoral contact locations on the medial and lateral tibial polyethylene surfaces [5]. The objective of this study was to combine the dual fluoroscope technique and the instrumented TKAs to determine the dynamic 3D articular contact kinematics and contact forces on the medial and lateral tibial polyethylene surfaces during functional activities.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In