0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of the Superficial Tangential Zone for Cartilage Modeled in Finite Deformation and With Tension/Compression Nonlinearity

[+] Author Affiliations
John R. Owen, Jennifer S. Wayne

Virginia Commonwealth University, Richmond, VA

Paper No. SBC2008-193180, pp. 693-694; 2 pages
doi:10.1115/SBC2008-193180
From:
  • ASME 2008 Summer Bioengineering Conference
  • ASME 2008 Summer Bioengineering Conference, Parts A and B
  • Marco Island, Florida, USA, June 25–29, 2008
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4321-5
  • Copyright © 2008 by ASME

abstract

Creation of replacement tissue to repair articular surface defects remains a challenge. Normal zonal characteristics of articular cartilage throughout its thickness, particularly the superficial tangential zone (STZ), and normal material properties have not been reproduced in vitro in scaffolds nor in vivo in repairing defects. Without sufficient quality, such transplanted scaffolds in vivo may be doomed mechanically from the outset. Removal of the STZ from normal cartilage negatively affects the remaining cartilage’s ability to support axial loads and retain fluids [1–3]. Previous studies have modeled excessive axial deformation of repair cartilage [4–5]. Studies have shown that modeling the STZ of normal cartilage as transversely isotropic provides better agreement with indentation experimental results than isotropic models [6–9]. Others have modeled experimental conditions by incorporating tension and compression nonlinearity [10]. Previous analyses have indicated that strain-dependent permeability within the STZ can positively affect the ability of free-draining normal and repair models to withstand imposed surface loads [11,12]. This finite element study further examined the role of an STZ with strain-dependent permeability on the behavior of normal and repaired articular surfaces under contact loading from rigid permeable and impermeable spheres. Nonlinear geometry permitted finite deformations to occur while the differential stiffness in tension and compression was also represented.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In