0

Full Content is available to subscribers

Subscribe/Learn More  >

Sub-Micron 3D Fluorescent Imaging and Visualization of Remodeling Cavities in Cancellous Bone

[+] Author Affiliations
Craig R. Slyfield, Ryan E. Tomlinson, Evgeniy V. Tkachenko, Kyle E. Neimeyer, Grant J. Steyer, David L. Wilson, Christopher J. Hernandez

Case Western Reserve University, Cleveland, OH

Paper No. SBC2008-193099, pp. 21-22; 2 pages
doi:10.1115/SBC2008-193099
From:
  • ASME 2008 Summer Bioengineering Conference
  • ASME 2008 Summer Bioengineering Conference, Parts A and B
  • Marco Island, Florida, USA, June 25–29, 2008
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4321-5
  • Copyright © 2008 by ASME

abstract

The mechanical properties of cancellous bone are determined from a combination of bone quantity (volume), the material properties of the mineralized tissue, and microarchitecture. Bone remodeling is the primary process through which bone mass and structure are altered in the adult skeleton. Bone remodeling involves the coordinated activity of osteoclast and osteoblast cells, which resorb and then form bone at an isolated location on the cancellous bone surface. Because bone resorption precedes formation, each bone remodeling event in cancellous bone is associated with a temporary void on the bone surface known as a remodeling cavity. It has been proposed that remodeling cavities can act as stress risers, modifying stress distributions in cancellous bone and potentially impairing bone strength, stiffness and other mechanical properties. While high resolution finite element modeling supports the idea that remodeling cavities have the potential to modify mechanical properties at the micro-scale (in individual trabeculae) [1] and at the apparent level (entire cancellous bone specimens)[2, 3], the experiments required to confirm these findings are limited because a repeatable method of quantifying the number and size (length width and depth) of remodeling cavities in entire cancellous bone specimens has not yet been demonstrated.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In