0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Property Determination of Bone Through Nanoindentation Testing and Finite Element Simulation

[+] Author Affiliations
Jingzhou Zhang, Timothy C. Ovaert

University of Notre Dame, Notre Dame, IN

Paper No. SBC2007-176801, pp. 971-972; 2 pages
doi:10.1115/SBC2007-176801
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Measurement of the mechanical properties of bone is important for estimation of the local mechanical response of bone cells to loading experienced on a larger scale. An increasing number of measurements of the hardness and Young’s modulus of bone tissue have been undertaken using nanoindentation [1,2]. However, testing conditions have not been uniform. The interactions that can occur between testing condition parameters were considered in this study, and average hardness and Young’s modulus were obtained as a function of indentation creep testing conditions (maximum load, loading/unloading rate (both equal in magnitude), load-holding time, and indenter shape).

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In