0

Full Content is available to subscribers

Subscribe/Learn More  >

Viscoelastic Characterization of Perfused Liver: Indentation Testing and Preliminary Modeling

[+] Author Affiliations
Amy E. Kerdok, Simona Socrate

Massachusetts Institute of Technology, Cambridge, MA

Robert D. Howe

Harvard University, Cambridge, MA

Paper No. SBC2007-176645, pp. 951-952; 2 pages
doi:10.1115/SBC2007-176645
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Computer-aided medical technologies are currently restricted by the limited understanding of the mechanical response of solid abdominal organs to finite loading conditions typical of surgical manipulation [5]. This limitation is a result of the difficulty in acquiring the necessary data on whole organs. To develop a constitutive model capable of predicting complex surgical scenarios, multiple testing modalities need to be simultaneously obtained to capture the fundamental nature of the tissue’s behavior under such conditions. In vivo tests are essential to obtain a realistic response, but their inherent difficulty and unknown boundary conditions makes them an impractical approach. Ex vivo tests are easy to control, but the response is unrealistic. A perfusion apparatus was previously developed that obtained near in vivo conditions for whole livers while allowing the ease of ex vivo testing [3]. This work presents the results from complete viscoelastic testing of whole-perfused livers with surgically relevant time-dependant indentation loading profiles to 35% nominal strain. These results will aid in the development of a constitutive model for the liver whose parameters can be related to the physical constituents of the tissue. As an intermediate modeling step, a 1D rheological modeling tool was used to identify the form and initial parameters for a constitutive model.

Copyright © 2007 by ASME
Topics: Modeling , Testing , Liver

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In