0

Full Content is available to subscribers

Subscribe/Learn More  >

Bone Formation and Inhibition of Bone Loss by Dynamic Muscle Stimulation With Altered Interstitial Fluid Pressure

[+] Author Affiliations
Yi-Xian Qin, Hoyan Lam

Stony Brook University, Stony Brook, NY

Paper No. SBC2007-176607, pp. 943-944; 2 pages
doi:10.1115/SBC2007-176607
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Tissue-level mechanisms and functions, including bone strain and muscle, are the potential key players in bone physiology and adaptation [1,2,3]. However, the mechanisms are not yet fully understood. Exercise such as muscle contraction appears to increase blood flow to the skeletal tissues, i.e., bone and muscle. These evidences imply that bone fluid flow induced by muscle dynamics may be an important role in regulating fluid flow through coupling of muscle and bone via microvascular system.

Copyright © 2007 by ASME
Topics: Fluid pressure , Bone , Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In