0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiphasic Mechano-Electrochemical Finite Element Model of Human Intervertebral Disc

[+] Author Affiliations
Hai Yao

Clemson University, Clemson, SC

Wei Yong Gu

University of Miami, Coral Gable, FL

Paper No. SBC2007-176511, pp. 927-928; 2 pages
doi:10.1115/SBC2007-176511
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

The intervertebral disc (IVD) is the largest cartilaginous structure in human body that contributes to flexibility and load support in the spine. To accomplish these functions, the disc has a unique architecture consisting of a centrally-located nucleus pulposus (NP) surrounded superiorly and inferiorly by cartilage endplates and peripherally by the annulus fibrosus (AF). Because the disc is avascular and experiences mechanical loads, the cells in IVD tissues live in a complex physical environment. Knowledge of mechanical, chemical and electrical signals within the tissue is important for understanding mechanobiology of IVD [1]. The objective of this study was to develop a three-dimensional (3D), inhomogeneous finite element model (FEM) for human IVD for analyzing the physical environment and solute transport within the tissue under different mechanical loading conditions. A case of IVD under axial compression was simulated and reported.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In