0

Full Content is available to subscribers

Subscribe/Learn More  >

Temperature Rise in Tissue Mimicking Material During HIFU Procedures

[+] Author Affiliations
Subhashish Dasgupta, Rupak K. Banerjee

University of Cincinnati, Cincinnati, OH

Prasanna Hariharan

University of Cincinnati, Cincinnati, OHFood and Drug Administration, Rockville, MD

Matthew R. Myers

Food and Drug Administration, Rockville, MD

Paper No. SBC2007-176922, pp. 91-92; 2 pages
doi:10.1115/SBC2007-176922
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

High Intensity Focused Ultrasound (HIFU) has shown considerable promise as a minimally-invasive technique for various therapeutic applications such as tumor ablation and vessel cauterization. The efficacies of these HIFU procedures depend on various operational parameters such as total acoustic power, pulse duration and transducer dimensions. In this study, the effect of total acoustic power on the tissue temperature rise is studied both experimentally and numerically. Experimentally, HIFU ablations, at different acoustic powers, were carried out in a tissue mimicking material embedded with thermocouples. Temperature rise measured from the in-vitro experiments were then validated with the numerical computations. Results show that experimental and numerical temperature rise match accurately. Our numerical model was able to predict the peak temperature rise within ∼12% of the experimental results. Results also show that the tissue temperature rise is linearly proportional to the input acoustic power. For the acoustic power levels considered in this study, the results suggest that acoustic non-linearity does not play a major role on the tumor ablation procedure.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In