Full Content is available to subscribers

Subscribe/Learn More  >

Systematic Error in the Measure of Microdamage by Modulus Degradation During Four-Point Bending Fatigue

[+] Author Affiliations
Matthew D. Landrigan, Ryan K. Roeder

University of Notre Dame, Notre Dame, IN

Paper No. SBC2007-175238, pp. 843-844; 2 pages
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME


The accumulation of fatigue damage in bovine and human cortical bone is conventionally measured by modulus or stiffness degradation. The initial modulus or stiffness of each specimen is typically measured in order to normalize tissue heterogeneity to a prescribed strain [1,2]. Cyclic preloading at 100 N for 20 cycles has been used for this purpose in both uniaxial tension and four-point bending tests [1–3]. In four-point bending, the specimen modulus is often calculated using linear elastic beam theory as, Display Formula

where F is the applied load, l is the outer support span, b is the specimen width, h is the specimen height, and ε is the maximum strain based on the beam deflection [2]. The maximum load and displacement data from preloading is used to determine the initial specimen modulus. The initial modulus and a prescribed maximum initial strain are then used to determine an appropriate load for fatigue testing under load control.

Copyright © 2007 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In