0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Stimuli Resulting From Embryonic Muscle Contractions Promote Avian Periosteal Bone Collar Formation

[+] Author Affiliations
Niamh C. Nowlan, Paula Murphy, Patrick J. Prendergast

Trinity College Dublin, Ireland

Paper No. SBC2007-172077, pp. 833-834; 2 pages
doi:10.1115/SBC2007-172077
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

Mechanical forces due to muscle contractions play an essential role in embryonic skeletal development. In neuromuscular conditions such as congenital myotonic dystrophy, where movement of the fetus in utero is reduced or absent, the bones and joints of the newborn often show malformations [1]. In this paper, we examine the effect of muscle contractions on embryonic bone development. We propose the hypothesis that mechanical loading due to muscle contractions promotes periosteal ossification and we test this hypothesis using computational and experimental methods. A set of FE analyses were performed using anatomically realistic morphologies and loading conditions, at several timepoints during development, in order to identify biophysical stimuli active during bone formation. Avian immobilization experiments were performed to examine bone growth in the absence of skeletal muscle contractions.

Copyright © 2007 by ASME
Topics: Bone , Muscle

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In