0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a System for Application of Dynamic Mechanical Compression on Intervertebral Discs in Organ Culture and Investigation of Load Magnitude Effects

[+] Author Affiliations
Casey L. Korecki, Jeffrey J. MacLean, James C. Iatridis

University of Vermont, Burlington, VT

Paper No. SBC2007-176569, pp. 823-824; 2 pages
doi:10.1115/SBC2007-176569
From:
  • ASME 2007 Summer Bioengineering Conference
  • ASME 2007 Summer Bioengineering Conference
  • Keystone, Colorado, USA, June 20–24, 2007
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-4798-5
  • Copyright © 2007 by ASME

abstract

In vivo studies on the intervertebral disc (IVD) indicate that the magnitude, frequency, and duration of applied compression loading results in alterations in mRNA expression, composition, and annulus fibrosus structure [1]. In vivo models typically use small animal models or small sample sizes that make it difficult to evaluate multiple dependent variables on the same tissue. In this study, it was considered a priority to utilize a large animal model to investigate the effects of magnitude of compression loading on interacting dependent variable measurements of disc cell viability, biosynthesis, composition, structure, and biomechanics. A bovine IVD organ culture system was used because it provides control over mechanical and chemical boundary conditions while maintaining viable cells and normal cell-matrix interactions. To date, there are no studies investigating the response of the IVD in organ culture to dynamic mechanical loading.

Copyright © 2007 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In